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An experimental study of the migration of dilute suspensions of particles in Poiseuille
flow at Reynolds numbers Re = 67–1700 was performed, with a few experiments
performed at Re up to 2400. The particles used in the majority of the experiments
were neutrally buoyant spheres with diameters d yielding a ratio of pipe to particle
diameter in the range D/d =8–42. The volume fraction of solids was less than 1%
in all cases studied. The results of G. Segré & A. Silberberg (J. Fluid Mech. 14, 136,
1962) have been extended to show that the tubular pinch effect in which particles
accumulate on a narrow annulus is moved toward the wall as Re increases. A careful
comparison with asymptotic theory for Poiseuille flow in a channel was performed.
Another inner annulus closer to the centre, and not predicted by this asymptotic
theory, was observed at elevated Re. As Re is increased, the distribution of particles
over the cross-section of the tube at the measurement location, lying at a distance
L

.
= 310D from the entrance, changes from one centred at the annulus predicted

by the theory to one with the particles primarily on the inner annulus. The case of
slightly non-neutrally buoyant particles was also investigated. A particle trajectory
simulation based on asymptotic theory was performed to facilitate the comparison of
theory and the experimental observations.

1. Introduction
A rigid sphere immersed in a spatially varying shear flow will undergo a lateral,

or cross-stream, motion in the presence of inertia. Inertia is necessary to break
the linearity of Stokes equations, under which lateral migration is forbidden, as
demonstrated by Bretherton (1962). In a study of the Poiseuille flow of a dilute
suspension of neutrally buoyant spheres, Segré & Silberberg (1962) observed that
a single rigid sphere in pipe flow migrated to an equilibrium position with its
centre located at r = 0.6R, R being the pipe radius. The phenomenon of radial
migration driven by inertia was termed the tubular pinch effect to indicate that the
uniform distribution of particles over the pipe cross-section converges, or is ‘pinched’,
to a narrow annulus as the suspension moves downstream. These experiments
prompted a strong interest in the suspension community, because at the time of
the observations there was no theoretical explanation of this experimental result. A
series of experiments followed, which investigated lateral forces on a sphere in several
flow configurations: migration in Poiseuille flow in the absence of particle rotation
(Oliver 1962), for non-neutrally buoyant spheres in vertical flows (Repetti & Leonard
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1964; Jeffrey & Pearson 1965; Karnis, Goldsmith & Mason 1966; Aoki, Kurosaki &
Anzai 1979) and plane Poiseuille flow (Tachibana 1973). These experiments,
beyond confirming Segré & Silberberg’s observations, showed in particular that the
equilibrium position was shifted towards the axis when particles were lagging the
flow, and towards the wall when they were leading it. Experiments were performed
for pipe-scale Reynolds numbers Re = ŪD/ν larger than 30 (where Ū is the mean
axial velocity, D = 2R and ν is the kinematic viscosity of the fluid). These experiments
indicated that the equilibrium position lies closer to the wall in the presence of
increased inertia. While inertially driven migration can be explained by consideration
of a single particle, Han et al. (1999) confirmed that it was a very robust phenomenon
which could be observed for volume fractions up to φ = 0.2.

The only theoretical evidence supporting lateral migration of a single rigid sphere
at the time of the experiments of Segré & Silberberg was that of Rubinow & Keller
(1961) who calculated the Magnus effect for a rigid sphere in a uniform flow. This
force, always directed towards the pipe centreline, could not predict the existence of
an equilibrium away from the axis. By a matched asymptotic expansion calculation,
Saffman (1965) demonstrated that a rigid sphere in a linear shear flow experienced
a lateral force proportional to its slip velocity relative to the fluid streamline going
through its centre. The departure from r = 0.6R observed for non-neutrally buoyant
spheres in vertical flow, toward the wall for particles which lead the flow, and toward
the axis for particles which lag the flow (Jeffrey & Pearson 1965), suggested that
Saffman’s lift played a major role in the migration of non-neutrally buoyant spheres.
Ho & Leal (1974) calculated the force exerted on a rigid particle in a quadratic
bounded shear flow in the case of small Reynolds numbers by a regular perturbation
method, and were able to show that variation of the shear rate combined with the
presence of a wall acting to create a repulsion resulted in an equilibrium position at
r = 0.6R consistent with the experimental results of Segré & Silberberg. Schonberg &
Hinch (1989) succeeded in lifting the low-Reynolds-number restriction by integrating
the solution of the differential equations yielded by the matched asymptotic expansion
method, and predicted the evolution of the equilibrium position for Re up to 150. Hogg
(1994) applied the same method to the problem of non-neutrally buoyant particles in
Poiseuille flow. Asmolov (1999) extended this method to Reynolds numbers as large
as 1500 by the use of an orthonormalization method to integrate the equations of the
matched asymptotic expansion problem. Note that, in all of the asymptotic theory,
the particle scale Reynolds number satisfies Rep � 1 where Rep ≡ Re(d/D)2, with d

the diameter of the particles and D that of the pipe.
To date there has been little experimental study examining the validity of these

theories at elevated Re. The objective of the present work is to study the influence of
inertia on the radial migration of rigid neutrally buoyant spheres in Poiseuille flow. We
extended the Segré–Silberberg experiments up to Re =1700 and considered particle
sizes yielding D/d = 8–42; a few experiments at larger Re will also be described. The
equilibrium radial position was examined and is termed the Segré–Silberberg annulus.
We also found a novel feature of inertial migration in the form of an inner annulus
and we examine whether it is another stable equilibrium position. Since the data were
collected at a single point at the end of the pipe, we did not study the evolution
of the concentration profile with position and therefore we did not check that the
distribution having an inner annulus reached a steady state within the length of the
tube. However, some observations such as the fact that the distribution switches from
one centred at the Segré–Silberberg position to one centred on the inner annulus
when Re is increased and that this occurs at the same Re for all particles provide
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d (µm) 190 ± 10 450 ± 50 550 ± 50 750 ± 500 900 ± 50 1000 ± 50
D/d 42 ± 2.5 17 ± 2.5 15 ± 1.5 10.5 ± 1 9 ± 0.5 8 ± 0.5

Table 1. Particle diameters and pipe to particle diameter ratios.
The pipe inner diameter is D = 8 mm.

alternative arguments in favour of the stability of the inner annulus that will be
discussed in detail. We have also examined the effect of a small buoyancy on the
migration process.

We first describe in § 2 the experimental techniques and the method used for
measurements of the particle distribution. The experimental results are presented in
§ 3. After reviewing the analysis and results of the matched asymptotic expansion
method in § 4, we compare and discuss the predictions of this theory with our
experimental results in § 5.

2. Experimental techniques
2.1. Particles and fluid

We used as particles polystyrene beads with diameters in the range d = 190 µm –
1 mm, as indicated in table 1. The particles were supplied by Maxi-Blast (South Bend,
IN, USA) and were found to be spherical. However, the pump which circulated the
suspension tended to flatten a small fraction of the larger beads with each circulation
through the apparatus. Therefore after some time, some of the particles were no longer
perfectly spherical. These non-spherical particles were observed to have a different
migration behaviour from the spheres and this was found to be a significant source of
scatter in the data for the large particles. The density of the suspending fluid ρf was
matched to the density of the particles ρp by using a mixture of glycerol and water.
The density of the fluid was measured using a hydrometer, or float densimeter, from
ERTCO (West Paterson, NJ, USA). The particle density was determined by finding a
fluid of measured density in which no sedimentation of a batch of particles occurred.
The densities of the different particle sets were in the range ρp = 1.049 − 1.053 g cm−3,
for which the suspending fluid composition in glycerol : water fraction was between
0.21 : 0.79 and 0.23 : 0.77 at a temperature T = 25 ◦C. The density of the particles
among a given set was homogeneous, except for the D/d = 17 and D/d = 15 sets,
for which slightly more and less dense particles were observed simultaneously at low
flow rates, and thus were used to study the influence of a dispersion in density upon
particle distribution. The suspension was maintained at T = 25 ◦C, a temperature for
which the viscosity of the suspending fluid was in the range η = 1.45 − 1.55 ± 0.03 cP.

2.2. Experimental apparatus

The experimental apparatus test section was a horizontal glass tube of inner diameter
D = 8 mm. The tube had a length L = 2.6 m, longer than the entry length Le ∼ 50 cm
necessary for the laminar flow to fully develop at Re ≈ 2000; above this Re, the
laminar flow becomes unstable. The measurement of particle distribution was made
at a position 2.5 m from the entrance. In order to ensure that the flow in the pipe
was undisturbed by perturbations from a pump, the flow was driven by gravity. The
suspension was delivered to the tube by overflow from a tank positioned at a fixed
height to an outlet of variable height, passing through the glass tube as indicated in
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Figure 1. Diagram of the experimental apparatus used. The diameter noted on the figure,
D = 8 mm, is the inner diameter of the glass tube. The overflowing reservoir is elevated relative
to the remainder of the apparatus, with the flow rate controlled by the elevation of the
overflowing reservoir above the thermostated reservoir.

figure 1. A Moineau progressing cavity pump (PCM model MR2.6H24) carried the
suspension from a lower thermostated reservoir back to the overflowing tank. The
pump was, however, isolated from the flow through the glass tube. The flow rate Q

was determined by measuring a collected volume of the suspension at the outlet of
the tube in a given time.

2.3. Measurement of particle position

The position of particles in the pipe was measured by making a vertical section of
the tube with a laser sheet and recording the position of the particles intersecting the
sheet with a camera. The position was measured at a fixed location corresponding
to L/D

.
= 310 from the entrance of the tube. To limit the deformation of the image

caused by refraction effects, a Plexiglas vessel was placed around the test section of
the tube and filled with glycerol. The index of refraction of glycerol nG = 1.48 is close
to the index of refraction of glass. The air–glass refraction at the cylindrical outer
wall of the tube was then transferred to an air–glass refraction at the plane wall of the
Plexiglas box (see figure 2). There is also a deformation of the image associated with
the refraction at the inner wall of the tube. However, the index of the glycerol-water
mixture is nF = 1.360 ± 0.002 at T = 25 ◦C (measured with an Abbe refractometer),
rather close to the index of glass and thus this effect causes only limited deformation.

The images were obtained using a digital video camera at 10 images per second.
The frame rate is not increased beyond this value in order to avoid any particle being
present in two consecutive images and being counted twice. The laser sheet being
filmed under an angle of 40 ◦, is a three-dimensional object and we have to ensure
that its depth is smaller than the field depth in our optical conditions: the aperture
chosen is therefore the largest available with this camera, i.e. an aperture number
of 11. This aperture allows a good focus over the whole width of the laser sheet.
The shutter speed is fixed at an opening period of 1/1600 s. The images are then
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Camera

Tube

Laser sheet

Figure 2. Experimental measurement of the particle positions: the camera captures images
of those particles intersecting the laser sheet. The air–glass refraction at the cylindrical outer
wall of the glass tube is transformed into a plane wall refraction (see figure 3).
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Figure 3. (a) Transformation of the observed refracted calibration grid to (b) its actual
symmetric form.

analysed with the public domain image processing software NIH Image to yield the
position of the intersected particles. Each image is thresholded to turn the particles
present on the section into separate homogeneous white zones. The counting of the
particles is achieved by keeping on each thresholded image only those white zones
the area of which lies between a minimum and a maximum value: these values are
chosen in order to avoid the counting of any particle of a different size which could
have remained in the system. This procedure yields the position X ref

p of each particle
centre on the refracted section. These data are then exported to Matlab where a
calibration is applied to restore the symmetry of the image. In order to do this
calibration, a disk having the same diameter as the glass tube and bearing an array
of regularly spaced points Xn has been inserted into the tube. An image of this
grid after refraction was recorded under the same optical conditions used in particle
position measurements, and the coordinates X ref

n of its points in refracted space were
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Figure 4. (a) Particle distribution over a cross-section and (b) the corresponding histogram
showing the probability p(r) as a function of the dimensionless radius, for Re= 67 and D/d = 9.
In (a), both axes are labelled with lengths scaled by the tube radius, and the bar at the lower
right-hand side shows the mean particle diameter on the same scale.

measured. This gives the value of the inverse refraction function G at the refracted
grid points: Xn = G(X ref

n ). The measured particle positions X ref
p are mapped onto the

refracted grid X ref
n : the position Xp of the particles in non-refracted space is then

simply given by an interpolation of the function G at the refracted particle positions
X ref

p .
The concentration profiles were measured for very dilute suspensions. The particle

volume fraction φ had to be small enough to ensure that particles were far apart,
so we always performed experiments for φ < 0.01. Thus, interparticle interactions are
argued to be of minor influence. The laser sheet was positioned at L/D = 310, at the
end of the tube (we assume a random distribution at the tube entrance). The particle
positions were then measured over at least 5000 images for each flow condition to
yield statistically significant results.

3. Experimental results
Measurements of the particle distribution over a cross-section have been performed

for each of the sets of particles of table 1. We first present the influence of the
Reynolds number and particle size on particle distribution for neutrally buoyant
particles, and then for the case of particles slightly different in density from the
fluid.

3.1. Inertial migration of neutrally buoyant particles

The mixture of glycerol and water chosen to ensure that particles are neutrally
buoyant has a relatively low viscosity, with η between 1.45 and 1.55 cP depending
on the set of particles used. At the lowest steady flow rate, this gives a lower limit
of Re = 60. The majority of experiments were carried out from near this lower limit
to Re ≈ 1700, close to the transition between laminar and intermittent flows, with
a few experiments performed at higher Re. Figure 4(a) shows the distribution of
D/d = 9 particles over a cross-section of the flow for Re = 67 and figure 5(a) shows
the result of a similar measurement performed for Re = 350. Note that the scaling of
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Figure 5. (a) Particle distribution over a cross-section and (b) the corresponding histogram
showing the probability p(r) as a function of the dimensionless radius, for Re= 350 and
D/d = 9. In (a), both axes are labelled with lengths scaled by the tube radius, and the bar at
the lower right-hand side shows the mean particle diameter on the same scale.

length in these figures is with the inner radius so that the pipe wall is at 1. These
results represent the cumulated particle positions over the whole experiment. The
bulk concentration is φ = 5 × 10−3.

A comparison of figures 4(a) and 5(a) shows that the equilibrium position is shifted
towards the wall when the Reynolds number is increased. To make such information
more precise, we characterize the radial distribution by a radial probability function.
We begin by building a histogram from all the measured radial positions r on
the cross-section. This histogram, when normalized, yields the probability density
function (p.d.f.) pr (r) associated with the probability of a particle being at a radius
r . A preferred radial position due to migration corresponds to a maximum of the
p.d.f. p(r, θ), associated with the probability of being at a radius r and a given
angular position θ . The experimentally measured pr is related to p by pr (r) =
π−1

∫ 2π

0
p(r, θ)r dθ . Assuming that p depends only upon r , this yields p(r) = pr (r)/2r .

The histograms showing the p.d.f. p(r) extracted from figures 4(a) and 5(a) are
shown on figures 4(b) and 5(b), respectively. The radius of equilibrium, i.e. the Segré–
Silberberg equilibrium position, is then taken to be the position, rmax , corresponding
to the maximum of the histogram. To allow a greater precision, we take the value
of the maximum of the parabolic curve passing through the maximum and its two
neighbouring values. For the D/d = 17 and D/d =15 particles, the density among a
given set was not homogeneous, causing a fraction of the particles to migrate towards
the bottom or towards the top of the cross-section. For these particles, the Segré–
Silberberg equilibrium position was determined by considering only the particles
located in a horizontal slice through the section centre.

Several sources of uncertainty can account for the dispersion observed around the
equilibrium position on figures 4 and 5. The measured centre of each particle in these
figures corresponds in fact to the centre of mass of the particle intersection by the
laser sheet; the difference between this position and the effective particle centre can
therefore be of the order of one particle size. As indicated by the horizontal bars in
the lower right-hand sides of figures 4(a) and 5(a), this can result in a significant error
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for the larger particles. Errors can also occur during the calibration: the operation
applied on the refracted images to suppress refraction effects is difficult for particles
close to the top and bottom of the pipe, where refraction is maximum. This imperfect
calibration will result in a broadening of the histogram of radial positions. The
dispersion in size observed among a given set of particles (see table 1), and the non-
sphericity of some particles can also contribute to the dispersion observed around the
equilibrium position.

When the Reynolds number is further increased, the equilibrium position is shifted
still closer to the wall. However, a second annulus appears on the cross-section at
smaller r as can be seen in figure 6(a). This inner annulus was seen for Re> 600 for
D/d = 9–17, and for Re > 1200 when D/d =42. It is much broader than the Segré–
Silberberg annulus (which is closer to the wall), and appears centred on r = 0.5R for
most of our data, spreading from r/R = 0.3 to r/R = 0.7. This distribution is thus
less sharply peaked than the regular Segré–Silberberg equilibrium position. When
the maximum of p(r) corresponds to the position of this inner annulus, we choose
to take the position of the local maximum of p(r) at larger r to be the Segré–
Silberberg annulus, plotted on figure 9. For Reynolds numbers close to the tran-
sition to intermittency, only this inner annulus can be clearly observed (see figure 6(c)
for results at Re =1650 and D/d = 17). For these Reynolds numbers, there are
generally very few particles remaining on the Segré–Silberberg annulus. It is then
difficult to estimate the equilibrium position located near the wall for these Re. It is
also surprising to observe that the inner annulus is robust enough to survive even
into the intermittent regime at Re ≈ 2400 (see figure 6e). It is worth mentioning
that the transition to intermittency is moved to lower Reynolds numbers even
by a small fraction of large particles as shown by Matas, Morris & Guazzelli
2003.

To complete the description, we can see that, as Re is increased, the highest
probability of finding a particle switches from the outer (Segré–Silberberg) annulus to
the inner annulus. This is clearly seen in figure 7 where are plotted the probabilities of
finding a particle on the inner, Pin, or outer, Pout , annulus as a function of Reynolds
number for different particle sizes. The smallest D/d = 42 particles, for which the
inner annulus is only oserved for Re> 1200, are not represented. The arbitrary
location of the inner annulus is 0.22 � r/R � 0.78 and that of the outer annulus is
0.78 <r/R � 0.98. The behaviour is remarkably similar as far as the independence
on particle size is concerned. We observe that Pin becomes larger than Pout for Re ≈
650.

For the smallest particles used in this study (D/d = 42), the behaviour is somewhat
different. The entry length necessary to achieve radial migration seems to be larger
than the length of our glass tube (see § 5 for the discussion of this entry length). A
typical concentration profile and the corresponding histogram showing p(r) for these
particles at Re =780 are shown in figure 8. Though there are particles present over
almost the entire cross-section, the outer circle can be clearly identified in the
histogram, allowing measurement of the outer circle position. However, for low Re,
this outer circle does not appear clearly enough in the histogram, and measurements
were then only carried out for Re > 200 for these particles. As a side but important
comment, the fact that the distribution on figure 8 has a uniform background other
than the accumulation on the Segré–Silberberg annulus gives confidence that the
initial distribution at the pipe entrance is uniform.

We present in figure 9 the variation of the measured Segré–Silberberg equilibrium
position (the outer annulus position) with the Reynolds number for each set of
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Figure 6. Particle distributions over a cross-section for D/d = 17 at (a) Re =1000, (c)
Re =1650 and (e) Re= 2400 and the respective histograms (b), (d), and (f ) showing the
probability p(r) as a function of the dimensionless radius. In (a), (c) and (e), both axes are
labelled with lengths scaled by the tube radius. Note that at Re= 2400 the flow is intermittent.

particles. The error in Re results from the uncertainty in the viscosity η, and was
�Re = ±0.02Re. The error in the radius results from actual broadness in the maximum
and calibration errors. It was larger at small Reynolds numbers than at large Re, as
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Figure 7. Probabilities of finding a particle on the inner, Pin (open symbols), or outer,
Pout (solid symbols), annulus as a function of Reynolds number for different particle sizes:
�,D/d = 17; �, 15; �, 10.5; �, 9.

–1 0 1

–1

0

1 (a)

2d/D

0.2 0.4 0.6 0.8 1.00

0.04

0.08

0.12

0.16
(b)

Figure 8. (a) Particle distribution over a cross-section and (b) the corresponding histogram
showing the probability p(r) as a function of the dimensionless radius for Re= 780 and
D/d = 42. In (a), both axes are labelled with lengths scaled by the tube radius, and the bar at
the lower right-hand side shows the mean particle diameter on the same scale.

indicated on figure 9 for three typical data points. The solid line is the prediction of
the asymptotic theory which will be discussed in the next section. Figure 10 shows an
expanded view of these results for small Re. We will discuss in § 4 how these results
compare with theoretical predictions.
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Figure 9. Segré–Silberberg equilibrium position of a rigid spherical particle as a function of
Reynolds number for different particle sizes: �, D/d = 42; �, 17; �, 15; �, 10.5; �, 9; �, 8.
The solid curve represents the prediction of the asymptotic theory.
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Figure 10. Enlargement of part of figure 9. �, Segré & Silberberg (1962) data D/d = 9.
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Figure 11. Particle distribution over a cross-section at (a) Re= 170 and (b) Re= 390, for a
set of particles of D/d = 15 having a dispersion �ρ about a mean density ρ̄p = ρf . The axes
are labelled with the dimensionless radius, r/R, and the bar represents the particle diameter
on this scale.

In order to compare our results to the results of Segré & Silberberg (1962) for
large Reynolds numbers, we consider their results for Re = 43–175, obtained with
particles having D/d = 9. Table 1 of their paper does not explicitly give the maximum
of the histogram for their measurements, but gives instead rlim and r̄ , respectively,
the outer radial position where the concentration goes to zero and the mean radial
position. The value rlim overestimates the equilibrium position, while the value r̄

certainly underestimates it since the skewness of the histograms appears to be negative.
However, the histograms of the concentration profiles obtained far from the entrance
(after a length L =120 cm) in Segré & Silberberg (1962) are very sharp. Hence, we
assume that r̄ is close to the maximum for these points. We have plotted the position
r̄/R of the corresponding experiments in figure 10, from which it can be seen that
our results for large particles (D/d = 9) are in good agreement. It should also be
mentioned that while Segré & Silberberg made some measurements at Re = 694, they
do not provide the value of r̄ , but only rlim/R = 0.80. This latter value is in good
agreement with the present data for D/d = 9 of figure 9.

The results of figures 9 and 10 clearly show that the Segré & Silberberg equilibrium
position moves toward the wall as the Reynolds number is increased, in agreement
with the theory for point particles. At a given Re, our experiments demonstrate that
this equilibrium position is shifted toward the centre as D/d is decreased, i.e. as
the particle size increases for a given pipe diameter. This size effect is magnified for
large Re.

3.2. Influence of a slight sedimentation on the inertial migration

As mentioned in § 2, in the case of the D/d = 15 particles, a slight dispersion in
density of ρp = 1.052±0.001 g cm−3 had an influence at small flow rates. At Re= 170,
light and heavy particles tend to migrate to equilibrium positions shifted closer to the
top and bottom of the cross-section, respectively. The neutrally buoyant fraction of
the particles remains on the Segré–Silberberg annulus (see figure 11a). The resulting
distribution is slightly deformed, its height being larger than its width. A measure
of buoyancy is given by the dimensionless number B = US/Ū =2/9a2�ρg/ηŪ , where
Ū = Um/2 is the average axial velocity and US is the Stokes’ sedimentation velocity.
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Figure 12. Particle distribution over a cross-section at Re =650 in the presence of slight
sedimentation: (a) B =1.5 × 10−3 and (b) B = 2.5 × 10−3 for D/d = 15. The axes are labelled
with the dimensionless radius, r/R, and the bar represents the particle diameter on this scale.

For these D/d = 15 particles, we estimate the maximum Bmax ≈ 0.0036 at Re= 170
(figure 11a) and Bmax ≈ 0.0016 at Re =390 (figure 11b). When the flow rate is in-
creased, it can be seen on figure 11(b) that the lower and upper equilibrium positions
are now on the Segré–Silberberg annulus. Also the radius of the annulus has been
slightly increased. This seems to indicate that the radial inertial force is dominated
by buoyancy for Re = 170 while it is stronger than buoyancy for Re =390.

Measurements were also made for particles all slightly denser than the fluid. Note
that these particles also have a slight dispersion in density. If the pipe were long
enough, the slightly heavier particles are predicted by the theory, see § 4, to reach
a single equilibrium position close to the bottom of the pipe. In fact, because the
buoyancy force is weak, the development length for settling is long relative to that for
inertial migration alone. Thus, we measure here the particle distribution in the
developing regime, when the force responsible for radial migration is not negligible
compared to gravity. Figure 12(a) shows the particle distribution at the end of the tube
for a density difference �ρ = 1.5×10−3 g cm−3 (B =0.0015) and Re= 650 in the case of
the D/d = 15 particles. The observed patterns noted in the previous subsection remain
clearly recognizable. Particles are present on the outer circle corresponding to the
Segré–Silberberg equilibrium position, though mainly on its lower part, and particles
are observed on an inner annulus of radius r ∼ 0.5R. Particles appear to sediment
along directions imposed by the radial migration. When sedimentation is further
increased, as in figure 12(b) where �ρ = 2.5 × 10−3 g cm−3 (B = 0.0025), particles at
the end of the tube are mainly present at the bottom of the pipe but also on the upper
part of the inner annulus. The entire pattern is shifted toward the bottom of the pipe
at this larger value of B .

4. Asymptotic theory
We now describe the method of matched asymptotic expansions which has been

developed by Schonberg & Hinch (1989), Hogg (1994) and Asmolov (1999), to
evaluate the lift force on a spherical rigid particle in a two-dimensional Poiseuille
flow. We consider a Poiseuille flow between two infinite parallel plates separated by
a distance l, which is disturbed by a rigid sphere of radius a = d/2 (see figure 13);
the radius is specifically denoted because of its use in theoretical developments of
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2a = d

Figure 13. Basic parameters used in the description of channel flow.

other authors. The origin of the coordinate system is taken to be instantaneously
at the centre of the sphere, thus moving with the sphere. The Reynolds number of
the channel flow Rc as defined by Asmolov differs slightly from our definition in
using the maximum velocity in the channel Um rather than the mean: Rc = Uml/ν.
Both the particle Reynolds number Rep = Umd2/2νl = Rc(a/l)2 and the size of the
sphere relative to the channel width α = d/l are assumed to be small. In contrast,
the channel Reynolds number Rc is of order unity or larger. The basic asymptotic
parameter in this problem can be defined as ε = R1/2

p , where Rp = Rep/2 is the particle
scale Reynolds number used by Asmolov.

In the matched asymptotic expansion theory, two regions of the flow are considered.
In the inner region close to the particle, the length scale is the particle radius a = d/2.
In the limit of small ε, the leading-order governing equations reduce to the Stokes
equations in an unbounded fluid. If the slip velocity of the particle relative to the
fluid is small enough (in particular in the case of a neutrally buoyant particle), the
leading-order solution is the stresslet velocity field. It corresponds to viscous flow
driven by a symmetric force dipole (see Schonberg & Hinch 1989; Asmolov 1999). If
sedimentation is sufficiently strong, the leading-order solution is the Stokeslet (Hogg
1994; Asmolov 1999). In the outer region far from the particle, we must consider
Oseen equations in which advection terms balance viscous terms. In this region, the
new length scale is found by stretching the inner length scale by ε. The solution to
these new equations must then match the inner solution.

In the following, we consider neutrally buoyant particles. The matching condition
can be encapsulated in the Oseen equation by introducing a singularity corresponding
to the symmetric force dipole. The equation of the outer flow can then be reduced to
a fourth-order ordinary differential equation for the Fourier transform of the lateral
velocity, as shown, for instance, by equation (5.6) of Asmolov (1999). The lift force
Fl is just the Stokes drag FS = 6πηaVmigr associated to the lateral velocity Vmigr. The
differential equation is solved with the orthonormalization method used by Asmolov,
ensuring a correct computation of the four independent solutions, as shown in the
Appendix of Asmolov (1999). Using the numerical procedure described by Asmolov,
we have computed the lift force for different Reynolds numbers, as displayed in
figure 14. To allow an easier comparison with our experiments (see the following
section), the force on figure 14 is plotted as a function of 2z/l where z is the distance
from the centre of the channel. It is also convenient to scale this force by R−1/2

c ε3. Close
to the wall (2z/l close to one) the force is negative and pushes the particle towards
the centre, whereas near the centre it is positive and pushes the particle towards the
wall. The equilibrium position zeq thus corresponds to the zero of Fl . The equilibrium
position as a function of Re based upon the average velocity is plotted as the solid
line on figures 9 and 10. It is important to note that for Re > 300 the force profile
exhibits a convex region of lower amplitude surrounded by two maxima (instead
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Figure 14. Variation of the lift force Fl exerted on a rigid spherical particle in channel flow
with position, calculated by the method of matched asymptotic expansions. The position z = 0
corresponds to the channel centreplane.

of a single maximum) between the centre and the equilibrium position. Finally, for
neutrally buoyant particles, the lateral motion of the particle can be described by the
balance between the lift force and the Stokes drag associated to the lateral motion:
Fl + FS = 0 where the drag force can be expressed as FS = 6πηadx/dt and x is the
position in the cross-section; the motion along the flow is simply described by the
Poiseuille velocity of the fluid at the particle centre. For the neutrally buoyant case,
both forces are expected to be purely radial, but are written in vector form for later
use.

In the case of slightly non-neutrally buoyant particles, we may safely continue to
use the above estimate of the lift force as long as buoyancy meets two conditions.
The first is that the stresslet velocity field dominates the Stokeslet velocity field for
the matching condition. This has been stated by Hogg (1994) as (a/l)−2B/2 � 1,
where B is the buoyancy number defined previously as the ratio of the Stokes settling
velocity to the channel average velocity Ū = Um/2. The second condition is equivalent
to inertia in the outer region being dominated by shear and not sedimentation, and
can be stated as Rc(B/2)2 � 1. Within these approximations, the lateral motion
of the particle can be described by adding a sedimentation force to the force
balance: Fl + FS + Fg = 0 where Fg = 4πa3�ρg/3, where g is the acceleration due to
gravity.

The entry length after which radial migration will have developed can be estimated
from the magnitude of the radial force Fl = A(d/l)4ρU 2l2/4, by assuming that Fl is
balanced by a viscous Stokes drag FS = 6πη(d/2)Vmigr. We have taken A to be a typical
magnitude of the scaled force. The results of figure 14 suggest that A is a function of
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D/d 42 ± 2.5 17 ± 2.5 15 ± 1.5 10.5 ± 1 9 ± 0.5 8 ± 0.5
Re 1760 290 225 110 80 65

Table 2. Channel Reynolds numbers Re above which Rep > 1, for each particle size.

Re. The entry length is then given by Le/l ≈ U/Vmigr = 6πA−1Re−1(l/d)3. As shown
in figure 14, there is a decrease in A when Re is increased. This decrease suggests
that the entry length will, in general, decrease slower than Re−1, but nonetheless is
predicted to decrease with increasing Re.

5. Comparison and discussion
5.1. Segré–Silberberg equilibrium position

In order to compare our results to the predictions of the asymptotic theory presented
in the preceding section, we assume that the curvature in the pipe geometry has
negligible influence: the channel width l corresponds to the pipe diameter D, and the
normalized distance from the channel centreplane 2z/l corresponds to the normalized
radius r/R. Figure 9 shows both the measured values of the equilibrium position,
obtained at L/D = 310, and the theoretical predictions as a function of Re. For
the D/d = 42 particles, it can be seen that the agreement is good when Re < 500,
even if, as on figure 8, migration is not completed for these particles at these Re.
However, notice that the experimental values seem to be closer to the centre than
those predicted by the theory when Re > 500, although the difference is small. As
particle size is increased, the discrepancy between asymptotic theory and experiments
becomes larger. It appears that the asymptotic theory provides an upper bound for the
equilibrium position. For instance, for the largest particles used, for which D/d = 8,
we observe an equilibrium position at r = 0.78 for Re = 440, whereas the predicted
equilibrium position is at r =0.87.

Noting that the asymptotic theory assumes point particles, these discrepancies may
be due to the two following finite-size effects:

(i) The theory assumes that the particle Reynolds number satisfies Rep � 1, but
this assumption is not valid for most of the particles investigated. Table 2 presents for
each particle size the value of the pipe Reynolds number Re above which Rep > 1. It
can be seen that for the larger particles the assumption of small Rep is almost never
valid in the range of Re used. While the value of unity for Rep holds no particular
meaning, a value of Rep = O(1) certainly invalidates the theory.

(ii) Another possible explanation may be the influence of the curvature of the pipe.
The theoretical results were established in the case of a channel geometry, and it is
possible that the curvature of the wall cannot be neglected when the particle radius
is not small compared to that of the tube. We mention the curvature in connection
with finite size of the particles, but the possibility exists that the force profile even for
point particles may be qualitatively different in a cylindrical domain.

We note finally that there is an additional source of discrepancy which is probably
more relevant in the case of the smaller particles: the asymptotic theory is inadequate
in the case of an equilibrium position too close to the wall, i.e. for large Re. The outer
region of the matched asymptotic theory corresponds to the region where advection
balances viscous terms, and in the case of neutrally buoyant particles, the length scale
of this region scales as dR−1/2

p . The assumption that the flow around the particle can
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D/d 42 ± 2.5 17 ± 2.5 15 ± 1.5 10.5 ± 1 9 ± 0.5

Le/D at Re = 500 9500 620 430 150 92
Le/D at Re = 1000 5600 370 260 90 55
Le/D at Re = 1500 4650 310 210 73 46

Table 3. Pipe to particle diameter ratios and corresponding estimated entry lengths based
on asymptotic theory. The pipe inner diameter is D =8 mm, and the scaled amplitudes of
the lateral force A(Re) were taken to be A(500) = 0.3, A(1000) = 0.25 and A(1500) = 0.2.
Measurements were performed at L/D = 310.

be separated into an inner and an outer region is certainly invalid for these particles
close to the wall.

5.2. Entry length of the inertial migration

Before discussing the entry length Le of the inertial migration, it is important to notice
that the entry length LP of the Poiseuille flow for the pipe used in the experiment
is of the order of LP = (Re/30)D ∼ 50 cm for Re =2000 (Tritton 1988) and smaller
for smaller Re. Therefore, the Poiseuille flow can be considered to be established
in almost the entire length of the tube, and the influence of LP is neglected in the
discussion of Le.

We mentioned at the end of § 4 that the entry length Le is predicted by the asymp-
totic theory to depend upon Re and particle diameter d as Le/D ≈ 6πA−1Re−1(D/d)3

(taking the conduit width, l, as the tube diameter, D). As indicated previously, A

decreases when Re is increased. Hence, it is expected that Le decreases more slowly
than Re−1. The values of Le at three different Reynolds numbers have been computed
for each particle size, and are shown on table 3. The typical magnitude of the scaled
force has been taken as the local minimum of the force profiles in the region between
the centre and the equilibrium position. The values of table 3 show that, except for
the smallest particles, the entry length is of the order of (or smaller than) the tube
length for all Re > 1000.

It should be noted that the asymptotic theory predicts that the near-wall region
develops much more rapidly, in fact, by more than an order of magnitude for
Re > 100, than the region at r less than the Segré–Silberberg annulus because of the
relative magnitudes of the lateral force in these two regions (see figure 14). This rapid
near-wall variation of the particles’ preferred radial location allows assessment of the
location of the Segré–Silberberg annulus even when the entire distribution is not fully
developed, in particular for the smallest particles.

In order to determine the evolution of the predicted particle distribution as a
function of axial position for selected conditions, we performed a simple numerical
integration of the equation of motion of a suspended particle, as discussed in § 4.
We calculate the positions at the location of the measurement (i.e. L/D = 310) of
an ensemble of independent particles initially randomly distributed over the cross-
section; the particles are launched one by one into the tube. For D/d = 42 and
Re = 780, starting from an initially random distribution at the entrance shown in
figure 15(a), the predicted behaviour at our measurement location of L/D = 310
seen on figure 15(b) is in qualitative agreement with the experimentally observed
distribution of figure 8(a). However, the fraction of particles on the Segré–Silberberg
annulus is larger in the simulation than in the experimental observation. Proceeding
downstream in figures 15(c) and 15(d), the simulation prediction at L/D =1250 still
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Figure 15. Predicted particle distributions over a cross-section for D/d = 42 at Re= 780:
(a) random distribution at the entrance, (b) L/D = 310, (c) L/D = 1250 and (d) L/D =5000.

shows an inner annulus, albeit containing fewer particles, which finally disappears at
L/D ≈ 5000. Conversely, for D/d = 9 and Re= 350, starting again from an initially
random distribution at the entrance shown in figure 16(a), the predicted developed
behaviour occurs well before the measurement location, as can be seen in figures 16(b)–
16(d) which should be compared with the experimental results of figure 5. Note in
figure 16(a) that the initial random positions are displaced away from the wall because
of the finite size of the particles.

5.3. Inner annulus

As mentioned in § 3, the inner annulus, for example as seen in figure 6(a), was observed
for Re � 600 for all particle sizes, except for the D/d = 42 particles for which it was
only observed above Re =1200. This particle distribution having an inner annulus
seems at first to suggest that under these flow conditions there is a region of lower
force for r/R ∼ 0.5, and that particles consequently tend to accumulate in this inner
region. This position coincides with the change in concavity of the force profile for
large Re. For instance, it can be seen in figure 14 that at Re = 1000, there is a
broad weak minimum in radial force between two maxima of relatively larger force.



Inertial migration of rigid spherical particles in Poiseuille flow 189

–1 0 1

–1

0

1
(a)

–1 0 1

–1

0

1
(b)

–1 0 1

–1

0

1
(c)

–1 0 1

–1

0

1
(d )

Figure 16. Predicted particle distributions over a cross-section for D/d =9 at Re= 350:
(a) random distribution at the entrance, (b) L/D = 6, (c) L/D = 25 and (d) L/D = 50. Note
for comparison that the experimental measurement on figure 5 is at L/D = 310.

Figure 17 shows that the position of this region of weak force seems to agree with
the observed inner maximum in the experimental radial distribution. The question
is whether this inner annulus is actually a real equilibrium position, i.e. a zero of
the force profile not captured by the theory for channel flow, or just the result of
a slower migration around r/R = 0.5. The asymptotic theory predicts that the inner
annulus will disappear if the pipe is long enough to allow the system to reach a fully
developed state.

To illustrate this last point and to determine whether the inner annulus is a
transient, we can compare the predictions of the simulation of particle trajectories in
the preceding section with the experimental observations. It can be seen in figures 15
and 16 that an inner annulus can be distinguished in the result of the simulation,
but that it differs qualitatively from that experimentally observed. The proportion of
particles on the outer annulus is much larger in the simulation, and the radius of the
inner annulus appears to be larger in the simulation. More generally, the simulation
based on the theory predicts that the axial location of the inner annulus, i. e. the
place in the pipe where this transient feature is observed, will strongly depend on
particle size as L ∼ (D/d)3. However, as shown in figure 7, the particle distributions
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on the inner and outer annulus are essentially independent of particle size: at a given
Re there is the same fraction of particles on the inner annulus for large or small
particles. This strongly suggests that the inner annulus is not a transient feature.

In addition to demonstrating that the measured particle distributions depend little
on particle size over the range of 450–900 µm particles, figure 7 shows that when
Re is increased there is a major shift from the outer annulus to the inner annulus.
Figure 6 also illustrates this trend, and shows the experimental variation of the inner
annulus as Re increases from Re = 1000 in figure 6(a) for D/d =17. If this inner
annulus were a transient, it would be expected to disappear at large Re, owing to the
expected decrease of Le with Re. Because it is, on the contrary, enhanced for large Re
is another argument in favour of the inner annulus being a real equilibrium position.

We can finally observe that figures 6(b) and 6(d) show situations where very few
particles are present on the outer annulus: these distributions suggest that particles
initially present in the outer region at the entrance of the pipe actually leave that
region to reach the inner annulus. This is another argument pointing to the stability
of the inner annulus. These experimental distributions even suggest that at Re ≈ 1600
the inner annulus could be the only equilibrium position in the pipe. We thus conclude
that experimental observations suggest the inner annulus is a real equilibrium position
rather than a transient feature. The failure of the asymptotic theory in predicting
such a distribution could be due to the point-particle assumption, the difference in
geometry in the theory and experiment, or a combination of these factors. Taking into
account either particle size or the cylindrical geometry is expected to induce changes
in the force profiles computed for plane Poiseuille flow, although the relevance to
our observations awaits such calculations. We note that the finite size of the particles
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Figure 18. Predicted particle distributions over a cross-section for D/d = 15:
(a) Bσ = ±0.0036 and Re = 170, (b) Bσ = ±0.0016 and Re = 390.

results in finite-particle Reynolds numbers Rep involved in the experiment, and except
for the smallest particles, all of the results in figure 7 are at Rep > 1.

5.4. Slightly non-neutrally buoyant particles

We have presented in § 3 measurements of the particle distribution when inertial
migration is accompanied by buoyancy effects for a set of particles presenting a
dispersion in density about a mean density equal to that of the fluid, with results in
figure 11 for D/d = 15. We estimated the dispersion to be a Gaussian with a standard
deviation of 0.001 g cm−3 about the mean; at one standard deviation Bσ = ±0.038
for Re =170, and Bσ = ±0.017 for Re =390. The predictions of the simulation for
the same conditions as figure 11 are presented in figure 18. The agreement is good as
the accumulation of particles at the poles is pronounced at Re= 170, but essentially
disappears at Re = 390. We note, however, that the Segré–Silberberg annulus is more
stretched in the vertical direction than is actually observed in the experiments.

We have also examined in § 3 the migration patterns in the presence of a weak
sedimentation for particles with a mean density slightly greater than the fluid; see
figure 12. The predictions of the simulation for the conditions of figure 12(b), i.e.
B = 0.025, Re= 650 and D/d = 15, are shown in figure 19. We used here a small
Gaussian dispersion about the mean density as described in the preceding paragraph,
and considered the same number of particles as were sampled in the experiments
to make the comparison easier. Starting from a random distribution at the entrance
of the tube on figure 19(a), the hole in the middle of the distribution opens at
L/D ≈ 80 and the simulated distribution presents an obvious asymmetry caused by
settling (see figure 19b). We find a good agreement with the experimental observation
of figure 12(b) at the measurement location L/D = 310, with simulation results
presented in figure 19(c). The inner annulus can still be clearly distinguished on the
simulated cross-section, though its lower part is devoid of particles, as both settling
and inertial migration move the particles toward the lower wall in this region. The
Segré–Silberberg annulus is clearly visible in the lower part, but is depopulated in its
upper part. When the simulation is run further, the particles tend to accumulate at
the bottom, as illustrated in figure 19(d) for L/D = 625 and will eventually converge
into a single point. The presentation of results in the latter part of the evolution, i.e.
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Figure 19. Predicted particle distributions over a cross-section for D/d = 15, Re= 650 and
B =0.0025: (a) Initial random distribution, (b) L/D = 125, (c) L/D = 310 and (d) L/D =625.
Note that the theory predicts convergence to a single point as L/D → ∞; the number of
particles considered is the same in each case (630).

in figure 19(c, d), for the simulation may be somewhat misleading unless it is noted
that the points become localized on small portions of the cross-section and become
indistinguishable. While it thus appears fewer particles have been sampled, this is not
the case. We should mention that in spite of the qualitative agreement of the theory
and experiment for the sedimenting particles, the criterion of Hogg (1994), noted in
§ 4, B(d/2D)−2 � 1 does not hold in these conditions. We have (B/2)(d/2D)−2 = 1,
meaning that the Stokeslet due to particle sedimentation is not negligible near the
wall. The second condition on the inertial length scales of sedimentation and shear
flow Rc(B/2)2 � 1 is met with Rc(B/2)2 = 10−3.

6. Conclusion
In this work we have examined the influence of inertia on the radial migration of

rigid spherical particles in Poiseuille flow. We have extended the work of Segré &
Silberberg (1962) for neutrally buoyant particles up to Re ≈ 2000. Our results show
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that the equilibrium radial position for this case, which we have termed the Segré–
Silberberg annulus, moves toward the wall as Re is increased. Our data for large
particles, meaning small D/d , are in agreement with those of the Segré & Silberberg
experiments performed for particles of similar D/d . The results for small particles,
D/d = 42, are in good agreement with the predictions of asymptotic theory (Ho &
Leal 1974; Schonberg & Hinch 1989; Hogg 1994; Asmolov 1999) up to Re ≈ 500. The
results for large particles do not agree with the asymptotic theory in the following
sense: the experimental equilibrium position is moved toward the centre of the pipe
relative to the predictions of this theory. This deviation from theory increases as D/d

becomes smaller (increasing size of particles for fixed tube diameter). The discrepancy
can be explained as a particle size effect. The theory is strictly valid only for Rep � 1,
a condition not met in our experiments. In addition, the theory is developed for a
channel flow, and the curvature of the pipe in the experiments cannot be neglected
when D/d is too small. A further source of discrepancy is that the theory may break
down for an equilibrium position too close to the wall.

In these experiments, we have observed an accumulation of particles on an inner
annulus, i.e. at smaller radial position than the Segré–Silberberg annulus. This occurs
for Re > 600 for all particles except the smallest set, for which this was observed
above Re = 1200. This inner annulus coincides with the change in concavity of the
force profile predicted by asymptotic theory for channel flow at large Re. In this
work, we questioned whether this annulus corresponds to a true zero of the force or
is a transient feature, observed only when the entry length is longer than the system.
Since experiments were performed at a single downstream position, we did not study
the evolution of particle distributions with position to a final steady state. However,
the following points are another way of arguing in favour of the stability of the inner
annulus.

The entry length for migration depends, according to theory as described in § 5.2,
upon the tube (channel in the theory; Asmolov 1999) Reynolds number and the
ratio of tube to particle size, D/d . The entry length is predicted to decrease as Re
increases – more slowly than Re−1, but nonetheless to decrease. Focusing first on large
particles (small D/d) and taking a specific condition, we observe that for sufficiently
small Re particles of D/d = 9 are fully migrated to the Segré–Silberberg equilibrium,
as seen in figure 4 at Re = 67. Thus we must expect that for larger Re, these same
particles will have completed their migration by the same measurement station, and
if not, the theory is incorrect in the scaling with Re. What we observe is that with
increasing Re there is a smooth transition from accumulation on the theoretically
predicted equilibrium position to the inner annulus as indicated by figure 7, and hence
the results show some form of breakdown of the theory. Opening consideration to
include particle size, the essential independence of this transition with Re from D/d ,
combined with the strong dependence of the entry length upon this ratio predicted
by the theory as noted in § 5.2, points to the inner annulus as an equilibrium location
rather than a transient. We note that this new equilibrium position would require only
a change in the detailed form of the force profile with respect to radial position from
that predicted by the theory for channel flow. In sharp contrast, the inner annulus
as a transient feature, with the probability of distribution to this and the Segré–
Silberberg position independent of particle size, would require a complete breakdown
of the existing theory with regard to both Re and particle size. While it is difficult
to envisage such a breakdown in scaling, there remains significant uncertainty that
could be resolved by further experiments and numerical analysis, with a study of the
theory for the cylindrical geometry a natural starting point in the latter case.
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The influence of concentration on lateral migration was not investigated in this
study. However, Han et al. (1999) observed that concentration effects do not modify
the location of the Segré–Silberberg annulus, but only induce a strong dispersion in the
particle distribution. We observed experimentally that when particle interactions were
not negligible, particles present at the Segré–Silberberg annulus tended to become
structured in alignments parallel to the axis of the flow, an effect already pointed out
as ‘chain’ formation by Segré & Silberberg (1962). This effect, which is studied in
Matas et al. (2004), was mostly avoided in the present investigation by keeping the
volume fraction low enough to limit interactions between particles.

We have investigated the influence of buoyancy in two cases, one being a slight
dispersion of particle density about that of the fluid, and the second for a set of
particles all slightly heavier than the fluid. For the case of a dispersion in density, we
observe an accumulation at the top and bottom of the cross-section. This accumulation
disappears as the ratio of inertia to buoyancy is increased through an increase of the
Reynolds number. In the second case, the inertial migration competes with settling
above the tube centreline while the two act in concert below, and this results in
a strong asymmetry of the distribution. In both cases, simulation of the particle
trajectories based on asymptotic theory captures the general features observed in the
experiments.
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